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We’re not doing so badly...

* Present-day software engineering is actually
astonishingly successful. Yes, we complain
about cost, bugs, etc., but we are routinely
building and using software systems of a size and
complexity that could scarcely have been
believed 20 years ago.

* How did we do this?

By applying lots and lots of good ideas
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But we can’t stop here!

 Does this mean we have “solved the software
crisis”?
Of course not: there was never just one software crisis.

« As our capabilities grow, so do our appetites
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Some new problem areas

Dynamically Assembled Software
— Plug-ins and friends
— Software leasing
— Mobile agents

Worldwide file sharing
— Massive replication

Interfacing security infrastructure(s) and application
programs

Concurrent / distributed programming “for the masses,
by the masses”
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How Formal?

Impractical for most applications,
T e e 4—  but rich source of powerful
concepts (invariants, pre-/post-
conditions, rely/guarantee,
serializability, etc.

— Hoare logic
— Relational calculus
— Process calculi

“Lightweight” formal methods < Big bang for buck
— Type systems

B Mode! checkin.g ] Surprisingly effective...
— Run-time monitoring
95% of benefit is obtained by
attempting to formalize software
Pseudo-formal methods designs; succeeding not especially
— UML important!

Informal methods «—
— Design patterns
— Extreme programming

= Also very effective... “Mining
the expertise of good
programmers and managers”
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Lightweight Formal Methods

Formal methods will never make a difference until they can be used by
people that do not understand them. ---Tom Melham

Types

— Capture simple “contracts” between components and their
environments

— Conformance is checked automatically every time the program is
compiled

— Challenge: Can we engineer powerful type systems to make
them useful in a highly dynamic environment? (Cf. proof-
carrying code)

Model checking

— Very helpful in expositing flaws in hardware designs
— Challenge: Can we do something similar for software?

Run-time monitoring

— ldentify components that actually misbehave in real time,
instead of detecting those that might in advance

Need more techniques like these!
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Research Agenda

. Nurture foundations
Moderate number of small projects (1-2 PI)

ll. Encourage experimentation
Many small-to-medium-sized efforts (1-5 PlI)

lll. Stress-test promising ideas
Small number of larger projects (4-15 PI)

Good ideas in software often take a long time
to mature.
E.g. garbage collection...
Invented in the late ‘50s
Gained widespread acceptance in the mid ‘90s!
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